Discuz!NT|BBS|论坛

注册

 

发新话题 回复该主题

怎样开始音箱的设计 [复制链接]

1#
]怎样开始音箱的设计---“设计流派”

(美)LYNN OLSEN 原著

你喜欢什么样的声音?答案应该因人而异,每个人都有不同的爱好、侧重点。某些人认为音色最重要,某些人喜欢整体的感觉,另外一些人则喜欢强大的三维空间感或强烈的透明感、声像等等......

“完美无暇的声音”往往是广告用语,你应该知道什么对你是最重要的,目前的扬声器都不能满足所有人的要求。

设计者只能根据自己的主观因素来进行设计,不能简单的说某一方法是正确或另一方法是错误的。如果有人说某种方法才是正确的,其他都有问题,那可能他正沉醉于自己发明的某一方法或信奉于某一设计流派之下。

我自己的立场?我当然不是某流派的教徒,我注意平坦的响应,小的能量残存,小的互调失真、并令人能产生非常逼真的感觉。下面介绍几种不同的方法,看看是怎样采用这几种方法达到他们认为完美的结果的。

注重脉冲响应(三维声像)的流派

Duntech、Thiel、Spica和Vandersteen 的产品属于这一类,设计者不惜高昂的代价来控制有害的反射,并达至单元相位的连贯性,通常使用一阶(6dB/Oct)的分频器,个别如Spica可能采用三阶(18dB/Oct)或四阶(24dB/Oct)的的高斯或贝塞尔分频器。

这是唯一能提供准确的脉冲响应的流派,有时比静电式、铝带式的响应还要好。可是相位变化、脉冲响应的可知性在音响工程中备受争议。而另外的一些工程师则认为,过分注意正确的脉冲响应根本是浪费时间和金钱。

典型的相位连贯设计中,单元要求很高,其频宽要超过实际需要的两倍以上,因此单元非常昂贵,并在分频器中进行精确的修正。实际上要控制声音的辐射图和控制单元的谐振在一阶的分频器中是非常困难的事情。

衡量该设计是否成功就要看他是否有十分精确的声像和空间感,如果达不到的话,该设计不成功--因为这正是该流派的最重要的目标。

平坦响应(客观设计)流派

多数的英国、加拿大的音箱属于该流派,它们拥有非常平坦的频率响应,英国的产品侧重1米或2米的轴向频率响应而加拿大侧重于半球辐射角度内的离轴响应要好。

他们采用由BBC、NRC根据多次盲听的结果分析而提出了测试的方法。这一派的设计者往往具有著名大学的学位,信奉客观的测试结果,补品线材、电阻电容、直热真空管等如果经不起盲听测试的“神秘效果”,他们都不相信。

BBC在60年代初最先精确测量和识别了喇叭单元、箱体的谐振、响应问题。许多英国音箱仍然在该领域占优势。实际上,可听的谐振往往比用正弦波测试的结果要低20DB以上,BBC首先认识到该问题, 于是采用特殊的方法来测试声染色、谐振的现象,该方法成为现在测量系统如FFT、TDS、MLSSA的标准部分。

客观设计往往采用三阶(18dB/Oct)巴氏或四阶(24dB/Oct)林氏滤波器。提供最平坦精确的带内响应和最小的带外互调失真, 但代价是脉冲响应出现严重的过冲。KEF的Laurie Fincham在70年代就用计算机进行优化,设计出具有精确声学衰减特性并带谐振修正的分频器。现在在任何的486、586计算机上都可以采用XOPT、LEAP等软件来实现分频器的优化,现今对设计者的要求是不管其设计流派、哲学如何,应能设计出具有精确声学衰减特性的分频器。

近来英国的设计者非常注意高质量的音箱支架。客观设计者往往不注意脉冲响应,也不注意单靠主观听音而区别出的电容、电感和线材,反而,他们重点是研究如何提高单元的质量、控制箱体谐振和精确的配对。

设计简单而主观的流派

某些意大利、斯堪的纳维亚人、英国、美国的音箱属于该流派。其分频器非常简单,有时只有一个保护高音单元的电容(甚至意大利的Sonus Faber连这个电容也取消了,我搞不清怎样保护高音单元),它们使用的单元是最优质的,使用的线材和箱体材料也很高级。

这一流派往往不注重测量指标,这种哲学概念指导下,单元的谐振没有任何的修正,简单的分频器带来的频率、相位、脉冲的偏差也认为可以接受。 其表现依赖系统中的其他器材。他们尽管具有一定的声染色,但实际上能营造出令人激动的效果和投入感。

号角和高效率流派

许多日本的HI-END音箱和少数法国、意大利、英国、美国的音箱属于该流派。该类哲学起源于西电的影院扬声器,Paul Voigt的抛物线号角和其他混血产品,具有很高的效率。最好使用小功率的直热三极管单端甲类功放来推动,以达到最佳效果。如果使用晶体管放大器,就算是甲类,常常会非常乏味。

号角通常具有非常低的谐波失真、调制失真和非常平坦的频率响应,但频率范围狭窄,在频率范围的两端有非常快速的衰减。而且脉冲响应、衍射、辐射范围非常难搞好,因此西方的HI-END系统很小采用,而将其留到专业、音响工程的范畴内使用。

然而,在过去的十年,美国的Bruce Edgar和日本的一些人却使号角的设计有重大的进展。得到了一些杂志的肯定,并开始向HI-END、ULTRA-HI的领域迈进。

我自己的意见?我也完全地可能喜欢新类型的号角,但现在我还不能说什么,因为我正准备将 Edgar的中音号角加入整个系统。

(按:以下介绍非电动式的喇叭单元)

静电平面式

少数的英国、美国、日本的公司制造这种产品,设计良好的静电扬声器具有最好的线性和保持活塞运动,同时具有低失真、脉冲响应非常好的优点,QUAD首先生产的静电扬声器非常著名而且超越同时代其他产品十年。

当然也有缺点:例如低效率、阻抗低以至令放大器非常难推动、有限的动态的范围、易损坏、缺乏低音等,而且偶极辐射图形使其高音特性对房间非常敏感,这些都很难解决,特别是其大面积振膜发声,对声像定位非常不利。

老式的QUAD采用最普遍的方法,“面对面”的3路系统,使用逐渐减少的振膜平面来产生高频,新型的就采用复杂的相位阵列系统达到接近球形的辐射图。而Martin-Logan的设计采用圆柱形的面板,但仍然存在同样的问题。所有的静电扬声器在200HZ下和8KHZ上某点有谐振。

简而言之,静电扬声器有很好的中音、深度,频率两端延伸、声像还可以,动态有限。

铝带和电磁平板式

小数美国厂家生产,如Apogee、Magnepan、Eminent Technology等,又分两类,铝带式使用非常薄的、波纹状的铝带(音圈)放在磁场中左右运动;电磁平板式使用Kapton或聚脂薄膜,音圈印刷或粘贴在振膜上。

电磁平板式通常使用磁铁阵列在振膜的后方或振膜的前后方都有磁铁(按推挽方式工作),但磁场分布不太均匀所以比静电扬声器失真大、但输出声压也大得多。

电磁平板式的磁隙比动圈式的要大、磁场中导线长度要短,因此电磁耦合要差。在动圈式中高BL积意味着有强烈的磁场和有较多的音圈放置在磁场中,产生的反电动势较大,要求功放要有高的阻尼和低的连线电阻;但在电磁平板式中阻尼主要由振膜的弹性和空气阻力产生,功放的影响相对较小。而且阻抗和效率很低,如果企图通过加长“导线”来提高性能,又会导致相位的响应变差。

它们有统一的驱动,接近线性声源,但阻抗、效率太低了,因此不能用在低音单元中,许多实际的铝带单元通常使用阻抗变换器来匹配其低达0.5欧姆的阻抗。

电磁平板式的声音介于动圈、静电式之间。中、高频染色少,辐射图类似静电式,因此其低音、声像的问题也相似,也很难用功放阻尼去改变声音。这一类型的音箱对房间最敏感,在某些房间里需要对平滑的低音和声像定位中取舍,因此我不喜欢,但我知道许多人喜欢其自然、开放的声音,而且铝带高音比动圈、静电的都要好,仅仅次于“无质量”的高音单元。

神奇的“无质量”喇叭

其原理是使用音乐脉冲电离气体来发出声音(电离的是氦气,不能为空气,否则会产生臭氧危害健康),因此直到100KHZ或以上都无谐振、相位精确、频响平坦、几乎没有失真。

我记得听 Plasmatronics是在1979年的冬季CES上,可以说从来没有听到如此的高音单元---在黑暗的房间看起来像电子管般发出蓝紫色的光,它们发出最美妙的声音,测量结果也最好,其“振膜”有质量,但跟空气的质量一样,因此声耦合是1:1的。其效率就很难去描述,用电子管的屏极电压可以直接去控制。 这大概是扬声器发展的终点。


怎样开始音箱的设计之“选择驱动单元”


(美)LYNN OLSEN 原著

驱动单元

在音箱里驱动单元确定了音箱能达到的最终效果(当然是其余部分都设计正确的话),并在整个HIFI系统中扮演最重要的角色。正如前述,世界上根本没有完美的驱动单元(可能在十年后或更长时间内会出现)。因为完美的驱动单元其振膜要求密度跟空气一样,全频范围内有极佳的统一的线性运动,全无各种类型的失真 ---要达到这点我们还有许多的路要走,不过不要灰心,随着材料科学的迅猛发展,我相信每隔2、3年都有重大的突破促进驱动器的发展。这要多谢大量的计算机模拟应用于材料力学、航空科技等领域,研究出高性能的材料代替原来昂贵、沉重的材料。现在已经广泛使用Kevlar、合成碳纤维和铸铝等材料,我们正期待合成钻石、超低密度硅玻璃胶体、新的金属和单晶碳等材料在振膜的应用。

所有类型的单元设计者要权衡的问题,主要是振膜既要保持良好的活塞运动(需要刚性),而又不会在中高频产生谐振(需要良好的自阻尼),而且还带来两个附加问题:空腔共鸣和磁力的非线性。

活塞运动:

刚硬的振膜意味着音圈的加速度能快速精确地传送到锥盆、球顶的整个表面上,具有快速的脉冲响应,低调制失真和和非常清晰透明的声音,即通常说的“快”,但通常“客观流派”的设计者会疑问:“经过分频器后,电感阻挡了脉冲上升的速度,低音、中音单元为什么会快呢?”,这实际是误会,他们没有说到一块了,其实这里的“快”是指单元在较大范围有活塞运动,而且其频响平直、对脉冲能快速响应、余振的衰减快。那么是不是够硬的物体都能做振膜,当然不是,例如青铜,够硬而且容易成型,古代用其来做铃、钟等,它有很长时间的谐振,衰减十分缓慢,一方面因为钟本身需要足够长的时间的振动衰减,所以结构做得比较特别以达到目的;另一方面钟的振动通过空气进行衰减,其与空气的耦合程度较低,因此空气带来的阻尼就很小。

自阻尼:

同样地,我们要求音圈能对锥盆和球顶进行制动,不想让它们在无信号经过音圈时自己振动,但不幸的是,目前所有的材料都只有一点点自阻尼,振动的持续时间是非常长的(即振动的Q值较高),一个方法是使用非常重的橡胶环粘贴在振膜上,但这会使频响不平而且灵敏度大大降低,因此不可行。

目前最好的防弹纤维、碳纤维和铝盆单元最少也有一个高Q的谐振点在其工作频率的高端,在这点,声压很高,余振非常大导致声染色很大,因此有时也称为盆分裂点。而且防弹纤维、碳纤维、纸盆单元的盆分裂不是逐步的,而是突然的。这就需要急速衰减的高阶滤波器和一些陷波器去修正该谐振峰,但通常这些点在3-5KHZ之间,人耳对其非常敏感,一点点的染色都会令人察觉。

实际上目前使用非常广泛的二分频扬声器都存在该问题,这些设计通常采用6-8英寸的防弹纤维、碳纤维和铝盆单元结合高音单元,因为它们的分频点通常设在3-5KHZ,这就很难兼顾既要抑制其谐振点又要在该点左右跟高音单元协调地发声。例如为减少低音单元谐振点的影响而将分频点取低,高音单元就会有较大的功率输入,容易超出其线性范围,使失真增大,而且分频点如果比较接近高音单元的F0,高音单元的自阻尼也变差,高音声染色大,频响起落也大。将分频点取高,低音单元盆分裂的现象就会出现,使声染色非常严重。因此较好的设计通常使用24DB/OCT的滤波器。

顺便提一句,我很喜欢防弹纤维、碳纤维的声音,正如上所述,刚硬的锥盆有其速度的优点,但太难控制其盆分裂现象了。因此有人使用高内耗的材料制造锥盆(以前使用塑料、但目前渐渐被聚丙烯等材料取代),它们有良好的自阻尼。这种材料通常有很平滑的频响曲线甚至可以使用6dB/Oct的滤波器,但其中的大多数我不喜欢,因为在中低声压输出时我觉得声音较模糊,其较软的材料通常也带来较大的失真。

我想通常在软球顶高音单元中也会发生这种情况,整个工作频段内它们都存在盆分裂,虽然它们很高的自阻尼使这种情况用仪器测量不出来,但耳朵可以听出来。但目前最好的软球顶高音使用了一些合成技术和涂料改进硬度,而且没有引起频响的劣化,优秀的例子是Dynaudio、Scan-Speak、Vifa的高档软球顶高音单元。

空腔共鸣:

虽然中低音单元的防尘帽(或高音的球顶)看起来没什么,但它跟中心导磁柱之间形成了很小的共鸣空腔。一个著名的例子是使用在LS3/5A上的B110单元,在1500HZ有一个很宽范围的频响上爬,在4500HZ附近还有3个非常高Q的峰值点,这其实是典型的防尘帽引起的共鸣。70年代流行的AUDAX的1寸软高音,同样在9到16KHZ发生上述问题,以前采用填充羊毛等材料将这些点的峰值抑制,但效果并不好,依然有1-3DB的峰存在。

现在,通常采用两种办法解决该问题,一是采用有中心通气孔的导磁柱(例如Dynaudio、Scan-Speak、Vifa),另一方法是采用相位塞代替防尘帽(例如Audax、Focal), Dynaudio 的Esotec D-260、Esotar T-330D和Scan-Speak D2905/9000高音成功地采用中心通气孔的导磁柱,因此后方的负载类似传输线,能产生良好的阻尼。它们被用在广受赞扬的Sonus Faber Extrema 和ProAc Response 3中。与其形成对比的是,Focal的 T120 、T120K使用反转的玻璃纤维、防弹纤维球顶,在工作频率间产生许多峰值,虽然许多人为其喝彩,但我不大喜欢。

磁场的非线性:

如果磁场是恒定的,类似空气芯电感,那音圈产生的电感值也是恒定的,因此其阻抗随频率的变化可以通过使用简单的RC补偿电路抵消。但音圈线圈放在磁场里,并在磁隙中运动,磁场分布是非线性的,因此音圈的电感值也是非线性的,因此其阻抗随频率变化也是非线性的。

这种非线性带来很多问题,首先它影响了单元的高端频响, 其次它引起了声音的延时(相对高音单元而言)。大功率信号的输入更加剧了这种情况,当音圈位移超出其线性位移时,磁场的变化更大。例如较佳的8" Vifa 单元P21W0-12-08, 其线性位移只有8mm(正负各4mm),其它典型的8寸单元只有6mm,大多数的中音单元只有1-3mm,当它们发出较低的频率时,往往超出其线性范围,音圈的感应调制就出现,在整个频率范围内产生IM、FM调制失真,这种情况大量地产生在2路或中频分音点较低的3路系统中。

有没有解决的办法?当然有,Scan-Speak的SD磁路系统和Dynaudio 的DTL磁路系统使用铜短路环来降低音圈的自感应系数,例如 8"的 Scan-Speak 21W/8554,或许是世界上最好的8寸单元,它的音圈电感只有0.1mH, 作为对比的8" Vifa P21W0-20-08则高达0.9mH。

另外,音圈的自感应系数变化的问题同样带来比较隐蔽的问题,我们知道,驱动单元的高端频率滚降特性由单元的机械滚降特性和音圈的自感应系数(这里引起了电滚降特性)确定,好的单元的机械滚降特性频率比电滚降特性频率要低,使合成的总特性较好。但很多单元的电滚降特性却比机械滚降特性要低,这样会产生强烈的调制和瞬态特性变坏。
分享 转发
田庄的窝
TOP
发新话题 回复该主题